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Abstract 
Rubber bushings used in the vehicle or aerospace can reduce the noise and vibration and absorb the shocks.  The 

heat accumulation in the rubber components is attributed to the nonlinear mechanical behavior of rubber and 

leads to degeneration of mechanical properties. The viscoelastic damping is treated as the major mechanism of 

dissipation energy, which is heat source of temperature rising in bushing. A finite element method is expanded 

from elastic structure to viscoelastic structure and computes the dissipation energy distribution in the rubber 

core. Based on that heat source, the temperature distribution of rubber bushing under radial harmonic excitation 

has been calculated using finite volume method. The frequency and amplitude effect on dissipation energy and 

temperature distribution are described. The radial dynamic testing is carried out and the temperature is recorded 

using thermal imager to evaluate the simulation. As complement, the dynamic torsional testing is also carried 

out explore the possible failure zone of rubber bushing under different types of loading. 

 Keywords: Rubber bushing; Viscoelastic; Finite element; Temperature; Dynamic testing. 

 

I. Introduction 
Rubber bushings installed on the automotive 

suspension system work as connecting components 

and isolator. Bushing can connect the small parts 

with the body of vehicle and also can minimize the 

transmission of noise and small vibration from a 

source to receiver[1]. Because of its elasticity and 

inherent damping, rubber bushings play a more and 

more important and critical role, especially, those 

engineering rubbers with carbon black fillers. 

Vehicles installed rubber components with better 

serving life have great advantages in the globally 

competitive market.  

Compared with any other metal material used in 

the vehicle system, rubber has a higher capacity of 

energy storage. Rubber bushings are expected to be 

strong enough to undertake a certain loading and also 

high damping ability to reduce the vibration and 

noise. However, the basic disadvantage of high 

damping material is the thermal effect, which leads to 

fatigue and shortens components’ serving life. 

Because of the nonlinear mechanical behavior of 

rubber, the stress- strain curve forms elliptical loop 

under cycle loading, which represents the energy 

dissipation and results in heat built up in the rubber 

products[2].  

This heat accumulation is known as the primary 

reason of rubber degeneration after long time service, 

such as aging, hardening and damping losing and so 

on. The temperature of rubber bushing increases as 

the cumulative hysteretic energy and the much lower 

thermal conductivity of rubber material compared 

with steel.  The self heating degenerated the 

mechanical properties of material and caused the 

thermal failure of bushings[3]. Furthermore, the 

aforementioned temperature influence doesn't include 

the effect of chemical changes, which occurs due to 

aging or continuous vulcanization. The chemical 

processes of rubber are dependent on the temperature 

and those processes can stimulate the degradation of 

fatigue life at elevated temperature or long periods 

serving. In sum, the material properties are weakened, 

aging process is speeded, and the desired life 

expectation of rubber components is shortened due to 

the heat generated within the rubber[4].  

As heat generation during service is a major 

concern of rubber components’ lifetime, numerous 

researchers have investigated the heat generation 

mechanism, as well as the effect on mechanical 

properties and lifetime expectation. There are several 

mechanisms accounting for dissipation energy 

accumulated in rubber components. One reason is the 

hysteresis damping, which  is dependent on strain 

amplitude, strain temperature and average strain 

range[5]. Hysteresis is small at low strain but 

maximized at high-strain and it can help the material 

retain its fracture toughness and fatigue resistance. 

Strain-crystallization and Mullins effect are two 

factors accounting for the hysteresis at high strain. 

The carbon black related rate-independent hysteresis 

and the rubber’s viscoelastic lead to the hysteresis at 

low strain. The Mullins effect describes initial 

transient softening of rubber shown in the stress-

strain curve before it reaches to a steady state, 

nonlinear response[6-8]. Strain crystallization takes 

place at higher strain and leads to increase of stiffness 

and hysteresis[9].  The time-dependent viscoelastic 

damping is another major mechanism accounting 
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for energy dissipation during deformation. The 

magnitude of energy loss in viscoelastic rubber is 

larger compared with the purely viscous behavior, 

which is associated with the mobility of molecular 

chains in polymer.  

Many researchers investigated the temperature 

distribution in the rubber products with heat flow 

governing equations. Clark[10] developed a model 

to investigate the thermal equilibrium of pneumatic 

tire with solution about temperature. Later, with 

the development of the finite element method, 

thermal model has constructed on the basis of the 

finite stress and strain analysis, which was 

economically and reasonably to predict the heat 

distribution of the rubber components. Yeow[11] 

developed a three dimensional model and used the 

finite difference method to calculate the 

temperature distribution of tyre on the influence of 

various parameters. Becher[12] simulated the 

dissipation energy and temperature distribution of 

loaded tires using a rheological model combining 

the viscous Maxwell elements and plastic Prandtl 

elements. Those numerical approaches to predict 

the temperature distribution of tire during rolling 

assume the temperature independent deformation 

of structure. Yeong[13] carried out the FEA 

simulation to get the temperature of tire under 

dynamic condition using the experimental date 

about total strain energy and hysteresis energy loss. 

Actually, the bi-directional iteration was employed 

in some publications, in which the structure 

deformation and temperature are mutually affected 

[14-16]. That strategy to solve the temperature 

filed of rubber components has been widely 

accepted by many researchers. In sum, the 

mechanisms of heat generation in the viscoelastic 

material were discussed in many publications, 

especially the external excitation induced 

hysteresis damping[17]. One of the problems in 

predicting the temperature distribution is the 

proper the heat transfer model and heat transfer 

coefficients. Some of the researchers started from 

the surface temperature of rubber component to 

estimate the heat transfer coefficient of rubber, 

which results were close to the analysis 

solution[18, 19]. However, most of literatures 

focus the thermal behavior of the tire and few 

reports specified on the rubber bushing. As the 

critical role of rubber bushing and even longer 

expected service life compared with tire, the heat 

generation mechanism and temperature 

distribution is very important to evaluate the 

performance of rubber bushing. Furthermore, the 

linear viscoelastic model is much easier to be 

manipulated in the frequency domain rather in the 

time domain during the FEA program[20]. Thus, 

in this research, the FEA is employed to explore 

dissipation energy distribution of rubber 

components under harmonic excitation. In this 

initial work, the one way structure-thermal 

coupling is adopted to simulate the temperature 

distribution without considering the temperature 

effect on the structure. With the temperature 

distribution obtained in this research, the heat 

concentration in rubber bushing can be identified, 

which is conductive to the design optimization.  

The origination of this article is listed as 

follows. Part 2 elaborates the pre-processing and 

post processing of FEA program in dealing with 

viscoelastic structure. Especially, the calculation 

procedure of energy in each element is specified, 

including the potential energy, kinetic energy and 

dissipation energy. Before directly apply the FEA 

program to the dynamic analysis about rubber 

bushing, a simple clamped beam is tested in the 

Part 2.  After the tentative verification with 

viscoelastic beam, Part 3 compares dissipation 

energy density of rubber core under radial 

harmonic excitation at different frequency and 

amplitude. Part 4 talks about the heat transfer 

simulation using the finite volume method to 

predict the temperature distribution of rubber 

bushing based on the heat source calculated in part 

3. 

Part 5 presents results of the experimental 

dynamic radial testing and torsional testing.   

 

II. The Finite element program 

development 
FEA can analyze complicated structure 

without simplifying to simple and general structure 

as doing in the theoretical analysis and that 

advantage makes it more powerful and applicable.  

Especially, with the development calculation 

capability of computer, the degree of freedom 

(DOF) of the structure is almost exponentially 

increased and corresponding solution becomes 

even more concisely elaborated. The 

incompressible 3-D viscoelastic solid is modeled 

with Hex20 element, which has 20 nodes and 60 

DOF.  Since the compounding ingredients and 

operating parameters affect the heat generation of 

rubber[21], the quantitative description of this 

material should be specified. Considering the 

limited experimental measurement for parameter 

identification and the real working environment of 

rubber bushing, the standard linear model is chosen 

as the constitutive model of rubber in the following 

FEA programming. Rubber coupon cut from the 

rubber bushing is used to identify the parameters 

of standard linear model and thermal properties. 

The parameters of the constitutive model are 

identified with the dynamic mechanical analyze 

(DMA), which give the spring and dashpot 

coefficients as E1=0.8 MPa, E2=1.07MPa and 

η=0.00323MPa.s in the frequency range 0-
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100HZ[22]. The governing equation of forced 

damped vibration under harmonic excitation is 

written as[23], 

         PuMωCiωK 2  ˆ                                  (1) 

Where the  P is forcing function and  û is the forced 

frequency response. The matrix in the bracket is the 

dynamic stiffness matrix ]K̂[
D

, which is formed after 

the assembly of stiffness, mass, and damping matrix 

in the FEA program.  The modulus of the viscoelastic 

structure is dependent on the modulus of the material, 

which is frequency dependent, 
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With this frequency function of modulus, the FEA 

program developed for elastic structure can expand to 

viscoelastic structure and termed as Simplex program 

in following discussion. For convenience, the 

modulus of rubber is set as 1MPa in the definition of 

material properties. And then, multiply the dynamic 

stiffness  0K of the viscoelastic structure with the 

frequency function  
2

Eωφ . Since the initial real 

variable  0K turn to complex variable ]K̂[ after this 

treatment, the numerical solutions are complex 

variables. The displacement of each node is 

composed of two components, 
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 With the displacements at each node, the 

stress and strain can be calculated from the quadratic 

hexahedral interpolations. Figure 1gives the sketch of 

the 27 integration points used in the Simplex program. 

The strain and stress of the 27 integration points in 

each element can be obtained from the displacement 

of the 20 nodes in each element. 

 
Figure 1. Integration points inside the Hex20 element. 

The sampling weights points and weights for Gauss 

Lagrange quadrature are  

]0.600.6[tsr
iii

  and 

]9/59/89/5[W
i

 ;  That  gives 0.6/r  , 

0.6/s  and 0.6/t  . The strain and stress at 

each node can be extrapolated using the Equation 4, 
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Where, t)s,(r,N
p

is the shape function; 
p
ε  and 

p
  

are strain and stress of each integration point. In this 

approach, multiple stress and strain have been 

assigned to those nodes shared by two or more 

elements. To solve this problem, nodal strain and 

stress are averaged to produce a smooth distribution. 

The complex stress and strain at each interpolation 

point are represented as, 
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With the strain and strain, the dissipation energy of 

this system is ready to calculate. The energy 

equilibrium of a system under external load is given as, 

DτUW                                                (7) 

Where W is the work done by the external force, U

is the strain energy stored in the system,   is the 

kinetic energy stored in the system and D  is the 

dissipation energy. In each cycle, the kinetic energy 

and strain energy are conservative and do not 

contribute to energy accumulation or dissipation. 

Thus, to keep the energy conservation, the energy 

obtained from the external load should be equivalent 

to the dissipation energy calculation from the loop 

area forming by strain and stress. In the Simplex 

program, the loading  tp
i

 and the corresponding 

displacement  tu
i

 of each node are collected. The 

increment of displacement at each time step is

   1tu(t)ud
ii
tu

i
, and the work done by the 

external load at each node can calculate from the 

summation over    tu
i

dtp
i

 in the time domain. The 

summation of loop area calculated from each pair of 

the force and displacement is the total external work 

done to the system. 

In the structure made of elastic material, the 

strain energy is related to the displacement square or 

strain square. For the simple spring and mass system, 

the strain energy can be easily estimated through
2Ku2/1 . Nevertheless, in a structure with 

viscoelastic material, square of the displacement does 

not mean the magnitude of the response because the 
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displacement is complex. The general expression of 

the strain energy in each element is given as, 

        0
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While it is not convenient to calculate the 0dV  since 

the mesh is not uniform for some complicated 

structure, thus, the isoparametric volume is 

recommended to replace 0dV  as  

dVcJedrdsdtJedV 0  , where J is the Jacobian 

matrix. Therefore, the strain energy of the element 

turns to, 
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As to the Hex20 element, the complex strain of the 

27 interpolation points are derived from
L

Bu and the 

complex stress σ of the 27 interpolation points are 

derived using DBu
L
 . Where D is the stress-strain 

matrix and
L

B matrix of Hex20 is, 
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The dissipation energy at each interpolation point 

displays from plotting the real part of stress against 

real part of strain, which are extracted from the 

complex stress and strain. Similarly, the strain  t  

and stress  tσ  shows the existence of phase delay 

and the loop area formed in each integration point 

can be calculated from, 

   tdεtσissD
πf2/1t

0t



                                 (11) 

It is important to point out that strain and stress in 

Equation 11 are real components since only the real 

parts of the stress and strain are extracted at the very 

beginning of the calculation. The integral of the 

product of stress and strain in time domain gives the 

dissipation energy in one integration point and the 

summation over the 27 interpolation points represents 

the dissipation energy of a Hex20 element. 

 

To calculate the potential energy using the Simplex 

program, the real part of the displacement of each node 

in the Hex20 element is extracted. Potential energy of 

the Hex20 element is simply written as, 
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2

1
U

T
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The stiffness matrix  K of each element is, 
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With the definition of stiffness matrix in Simplex, the 

time dependent strain of the 27 interpolation points 

are obtained by multiplying displacement with 

matrix
L

B . Then, the time dependent stress of the 27 

interpolation points are obtained by multiplying strain 

with matrix D. The summation of the product of 

stress and strain at the 27 interpolation points is the 

total potential energy in each Hex20 element. 

 

The kinetic energy calculation is based on the mass 

matrix of Hex 20 element, which is formed as, 

ceJ
V

IIJ
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With the lumped mass of each node, the kinetic 

energy is directly calculated from the square of the 

real part of the velocity multiplying half of the 

lumped mass. To verify the energy conservation of 

the system, the kinetic energy of the whole system is 

summed up over all nodes. The real part velocity 

comes from the complex displacement at each node, 

   ωtcosωuωtsinωuν
IR

      (15) 

To test the reliability of the Simplex program in 

developing the dissipation energy, a clamped beam is 

practiced before analyzing the more complicated 

cylindrical rubber bushing. The viscoelastic beam is 

meshed into 40 elements and vertical harmonic 

loading force is applied on the central line of the 

structure. The frequency scan gives the first damped 

natural frequency as 33.5Hz.  With the Simplex 

program, the external work done on the clamped 

beam, potential energy, kinetic energy and 

dissipation energy (strain energy) of the viscoelastic 

structure at different excitation frequency are 

calculated. Figure 2(a) shows the accumulated work, 

the dissipation energy, potential energy and kinetic 

energy in one cycle at 1HZ and 45 HZ. The structure 

experiences deformation slowly under the quasi-static 

excitation at1HZ.  
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Figure 2. Energy accumulation at 1HZ and 45HZ. 

 

Kinetic energy is quite small compared with 

others since the velocity of the nodes is fairly slow 

under low frequency excitation. Thus, a scale 1000 is 

multiplied to enlarge the variables of kinetic energy 

in the plot. The potential and kinetic energy variation 

change in time domain but the ending value is 

consistent with beginning value after one cycle.  

Because excitation at 1HZ is approximated to the 

quasi-static deformation, the different between the 

ending value of dissipation energy and beginning 

value is very small after one cycle. But the external 

work calculated from the loading and the 

corresponding displacement at central zone of beam 

overlaps with the dissipation energy accumulation in 

time domain. Figure 2 confirms energy conservation 

in the system and verifies the accuracy of Simplex 

program development. Figure 2(b) explores the 

frequency effect on dissipation energy and the result 

indicates that the excitation at 45HZ accumulated 

much faster and higher than that at 1HZ. As 

expected, the kinetic energy and potential energy are 

still conservative after one cycle and the integral of 

dissipation energy follows with the variation of 

external work accumulation. 

Figure 3 shows the periodicity of dissipation 

energy under harmonic excitation. The derivative of 

external work and dissipation energy over time are 

plotted as dt(work) and dt(strain). No matter under 

excitation 1HZ or 45HZ, the curve of dt(work) and 

dt(strain) are sinusoidal function. Then, the external 

work and dissipation energy built up are definitely 

periodic because they are calculated from the integral 

of periodic function. With this principle, the heat 

generation rate of a structure under harmonic 

excitation is a constant if the thermal effect of the 

structure is ignored.   

 

 

 
Figure 3 Periodicity of the external work and strain energy (dissipation energy). 

 

III. The dissipation energy density in 

rubber bushing 
Figure 4 (a) shows the nonuniform displacement 

of rubber core under the vertical loading force 

applied at the outer surface of the rubber core to 

simulate the dynamic tensile test. The inner surface 

of the rubber is attached with the steel shaft and 

treated as fixed boundary in the model. The real part 

and magnitude of displacements decrease from the 

outer surface to the inner surface of rubber core. 

Figure 4 (b) shows the frequency dependence of the 

displacement. The node at the top of the bushing has 
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been selected. Because of the high natural frequency 

of the viscoelastic cylindrical rubber bushing, the 

frequency effect at lower frequency is dominated by 

the properties of viscoelastic material rather than the 

resonance effect. Thus, with the increase of module 

with the frequency, the real part and magnitude of the 

displacement decrease. The peak value of imaginary 

displacement under frequency scan is corresponding 

to the damping behavior of the material used in this 

simulation.  

 
Figure 4. Displacements (a) Nodes arranged in radial from low to high position; (b) top node at different 

frequency. 

 

Figure 5 shows the dissipation energy 

distribution of rubber core at excitation frequency 

10HZ. Since the top node has the maximum 

displacement, the displacement of the top node is 

taken as the excitation amplitude. The highest 

dissipation energy density appears at the top and 

bottom loading zone of the rubber bushing. When the 

excitation amplitude is doubled to 2mm, the 

magnitude of dissipation energy increases a lot while 

the distribution is kept. The dissipation energy 

distribution in radial direction is similar to the 

tendency of displacement. Combining the amplitude 

effect, it is clear that the higher the displacement, the 

higher is the accumulated dissipation energy.  

 

 
Figure 5.  Density of dissipation energy in rubber core (a) Amplitude=1mm; (b) amplitude=2mm. 
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Figure 6. Density of dissipation energy in rubber core (a) 30HZ; (b) 60HZ; (c) 90HZ. 

 

Figure 6 displays the frequency effect on the 

magnitude of dissipation energy. In this testing range 

of frequency, the DMA test on rubber coupon shows 

monotonously increase of modulus. Thus, under the 

same loading force, the amplitudes decease at rising 

excitation frequency. That effect results in 1mm, 

0.8mm, 0.688mm and 0.662mm amplitude at 10HZ, 

30HZ, 60 HZ and 90HZ excitation respectively. The 

fast increase of modulus happens below 60HZ in 

current material and the modulus approaches to 

constant when excitation frequency approximates to 

100HZ. From 10HZ to 30HZ, the stiffness of the 

structure changes significantly and leads to almost 

20% reduction of amplitude.  Nevertheless, after 

60HZ, the slowly increase of modulus just slightly 

affects the stiffness and has little effect on the 

excitation amplitude. 

 

IV. The numerical temperature 

distribution 
The stress-thermal analysis is based on the 

assumption that the mechanical properties of linear 

viscoelastic material is temperature independent, as 

thermo-rheologically research about the rubber is 

needed if dealing with the temperature dependent 

material[24]. The heat conductivity and other thermal 

properties are measured using the hot disk thermal 

analysis instrument, which is based on the transient 

plane source (TPS) method. The specific heat and 

heat transfer coefficients are estimated using the rule 

of mixture assuming the compositions of rubber are 

carbon black and polymer and neglecting the trivial 

components. The physical and thermal properties of 

rubber used in this research are given in Table 1. 

Table 1: Physical properties of rubber 

Properties Poisson’s ratio Heat transfer coeff Static Modulus 

Value 0.495 10(W/(m2.K)) 0.01(GPa) 

Heat Capacity Thermal diffusivity Density Thermal conductivity 

1611.44(J/Kg.K) 0.202(mm2/s) 952.54 (Kg/m3) 0.343(W/m.K) 

 

There are some assumptions about the heat 

transformation simulation on rubber bushing. Firstly, 

heat source of rubber bushing comes from the 

frequency dependent viscous damping. Secondly, the 

outer surface of the steel sleeves is exposed to 

ambient air at room temperature. The heat convection 

is the main approach to transfer the heat from rubber 

bushing to air. Thirdly, the inner steel sleeve is 

installed on the balancing bar of the suspension 

system and the heat transform from the inner surface 
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is relative slow. Finally, the cross section of the 

rubber bushing is modeled considering the negligible 

heat transfer in axial direction.  The mesh of the 

rubber core tallies with FEA element distribution in 

the process of dissipation energy calculation.   

 
Figure 7. (a) Sketch the radial mesh of rubber bushing; (b) control volume 

 

Figure 7(a) is part of the radial mesh of rubber 

bushing and Figure 7(b) is the control volume of 

rubber. The governing equation of transient heat 

transfer problem in the cylindrical coordination 

system is written as, 
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According to the definition of control volume, heat 

transfer governing equations of current rubber 

bushing are classified into three cases. The first 

governing equation applies to control volume inside 

of rubber, 
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governing equation applies to the control volume at 

the boundary between the steel sleeves and air, 
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Where p
0

p
0

p
TaΔVSb  . The third control volume 

describes the thermal equilibrium between the 

interface of rubber and steel. As to rubber at the 

interface, the governing equation in Equation 17 still 

applicable after replacing the coefficients to

Δt

ΔVρcρc
a p

0 ))()(( sn  and 

ΔrΔxrr0.5ΔV sn )(  . Whereas the governing 

equation of the steel is changed to Equation 19 since 

the heat built up in the steel is negligible and treated 

as zero, 

ΔxΔrrr0.5Saaaaaa snpp
0

SNWEp s)( 

                                                                                        (19) 

Where p
0

p
0

snc TaΔxΔrrr0.5Sb  s)( .
 

With the dissipation energy generation rate estimated 

from the Simplex program, the temperature 

distribution at the cross section of rubber bushing 

becomes available. Figure 8 shows the temperature 

rising on the cross section after different loading 

period and the excitation at 10HZ is chosen 

according to a field test about rubber bushing 

installed on the exhaust system. The temperature of 

rubber core increases obviously with the constant self 

heating rate.  The plots indicates that the maximum 

temperature of rubber bushing changes from 315K, 

330K, and 340K to 350K after loading time 600s, 

1800s, 3600s and 7200s. The thermal conductivity of 

steel is 10 to 100 times higher than that of rubber. As 

a result, the temperature gradient in the steel is much 

lower than rubber’s, and the later shows much higher 

temperature at the top and bottom loading zone than 

the middle area. The author tries to assign the thermal 

conductivity of rubber with a number 10 times higher 

than the measured value and the temperature gradient 

in rubber core is highly reduced. However, the low 

heat transfer coefficient and thermal conductivity of 

rubber definitely causes the heat and temperature 

rising concentrated in certain area.  
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Figure 8. Surface temperature distribution of the rubber bushing at 10HZ; (a) 600s; (b)1800s; (c)3600s; (d) 

7200s. 

 

The amplitude effect on the temperature 

distribution of rubber bushing at 10HZ excitation is 

given in Figure 9. After 120s, 1mm amplitude 

excitation leads to the maximum temperature 303K 

while the 2mm amplitude excitation displays a 

maximum temperature 315K. Figure 8(a) indicates 

that 600s is needed to reach that temperature 315K if 

the excitation is applied with1mm amplitude. Thus, 

this comparison may imply a short service life of 

rubber bushing under larger deformation since the 

temperature increases much quickly in that case. 

 

      

Figure 9. Temperature distribution of rubber at amplitude (a) 1mm; (b) 2mm. 
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Figure 10. Temperature distribution at frequency (a) 30HZ; (b) 60HZ; (c) 90HZ. 

 

The frequency effect on temperature rising inside 

of rubber bushing is presented in Figure 10. 

Because of the increasing modulus of rubber 

material in the test frequency range, especially the 

big increase in the range 0~45HZ, the amplitude 

deceases from 0.8mm, 0.688mm to 0.622mm as the 

excitation frequency increases from 30HZ, 60HZ to 

90HZ. Thus, the temperature distribution of rubber 

bushing after 120s as shown in Figure 10 should 

combine the influence of frequency and amplitude.  

The higher frequency means more cycles in unit time 

while the corresponding low amplitudes leads to 

lower dissipation energy in per cycle. As a result, the 

excitation at 60HZ presents apparent increase of 

temperature compared with that at 30HZ, however, 

the excitation at 90HZ gives a close temperature as 

the 60HZ excitation due to the comprehensive effect 

of amplitude and frequency. If the modulus of 

material is frequency dependent, the higher frequency 

definitely causes more dissipation energy and higher 

temperature. 

V. Dynamic testing 
With the Simplex program and heat transfer 

simulation, the temperature distribution of rubber 

bushing under vertical dynamic loading with 

different excitation frequency and amplitude are 

predicted. To verify reliability of the numerical 

calculation, the dynamic radial testing is carried out 

to compare with the simulation results. Torsional 

dynamic test is also required since torsional loading 

is one of the major loading types of rubber bushing 

and that result is significant to explore the failure 

mechanism. However, the MTS equipment has 

restricted specification about the dimension of 

samples in order to fit them into the clamps. The 

fixtures prepared for radial and torsional dynamic 

testing are designed and machined. Figure 11(a) is 

the original profile of rubber bushing and Figure 

11(a) and(c) are fixtures incorporating the bushings 

for radial test and torsional test. 

  

Figure 11 (a) Rubber bushing; (b) tension/compression fixture; (c) Torsion fixture 
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Figure 12. Dynamic radial test (a) Out of phase at 10HZ and amplitude 1mm; (b) the amplitude dependence of 

the stiffness at 10HZ. 

 

The sinusoidal signal is chosen for the dynamic 

test and the input amplitude and frequency of each 

loading is specified. To have apparent temperature 

variation in a few minutes, the amplitude should be at 

least 1mm and the test range of the instrument is no 

more than 2mm. The recorded time for each case is 

dependent on the time required to have at least three 

steady cycles. The temperature rising of rubber 

bushing during the dynamic test is recorded using the 

thermal imager. The environment temperature of the 

dynamic testing is about 298K. Figure 12(a) plots the 

phase shift between displacement and force at 

excitation at 10HZ and 1mm amplitude.  Figure 12(b) 

records the influence of amplitude on the dynamic 

stiffness of rubber bushing. The dynamic stiffness at 

amplitude 0.2mm is higher than that at 1mm and 

1.5mm. The tendency indicates that increasing the 

excitation amplitude leads to the softening of rubber 

components. 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Figure 13. Temperature distribution on the surface of rubber core (a) Digit camera; (b) thermal; (c) numerical 

simulation. 

 

Figure 13 compares the temperature distribution 

obtained from the dynamic testing with the heat 

transfer simulation. Because of the special design of 

the fixture, only part of the surface of rubber bushing 

can be photographed using the thermal imager. The 

temperature shown in Figure 13 is the rubber bushing 
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after 120s excitation at 10HZ and 1mm amplitude. To 

have the general distribution of temperature, six 

points are spotted in circumferential direction and the 

corresponding temperatures are listed in Table 2.  

Point 4 and 5 are symmetric over the horizontal line 

of the structure and displays same temperature. The 

maximum temperature appears at the top loading 

zone, which is close to the external surface of rubber 

core. As the spotted point is far away from the top 

loading zone, the temperature decreases gradually 

and reaches to lowest at the horizontal line. Even 

though the bottom part of the temperature is invisible, 

the symmetrical structure and the sinusoidal loading 

assure the symmetry of temperature distribution.  

Thus, the dynamic testing temperature distribution 

matches well with the simulation result. Furthermore 

after 120s, the simulation gives a maximum 

temperature 303K and the dynamic test gives a 

maximum temperature 302K.  The slightly lower 

temperature in the dynamic testing can attribute to 

the heat transfer from the surface to ambient. 

Generally speaking, it is confident to declare the 

reliability of Simplex program and FVM simulation 

in predicting the temperature distribution of rubber 

bushing. 

 

Table 2: Temperature distribution on the surface of 

rubber bushing 

Points No. 1 2 3 4 5 6 

Temp(K) 303.0 302.5 300.8 300.7 300.7 300.9 

 

Figure 14 shows a series of photos captured by 

the thermal imager at different time. Those photos are 

numbered from left to right and then from top to 

bottom. The maximum temperature changes from 

300.2K to 301.9K in 100s.Temperature from three 

points are collected from each photo and plotted in 

Figure 15 to explore the heat concentration in rubber 

core.  
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Figure 14. Temperature distribution on the surface of rubber core (a) t=4s; (b) t=15s; (b) t=31s; (b) t=45s; (b) 

t=58s; (b) t=72s; (b) t=84s; (b) t=99s. 

 

sp3 is a point close to the top loading zone and 

has the higher temperature that the other two points. 

sp1 is a point close to the central horizontal line and 

has the lowest temperature.  Figure 14 indicates the 

temperature gradient of rubber core in circumference 

becomes more and more evident. At the beginning, 

the temperature of the three points are pretty close, 

especially that at the points sp2 and sp3. During the 

cycle loading, the temperature at point sp1 increases 

much slower than that at the other two points. This 

quick temperature rising of point sp3 can attribute the 

higher heat generation rate in that area. Nevertheless, 

heat fast rising temperature make the top loading 

zone as the most easy damaged place of rubber 

bushing under the radial loading and that result is 

helpful to investigate the stability of this structure.   

 

Figure 15. Rubber bushing surface temperature rising 

over time. 

 

 
Figure 16. Temperature distribution of rubber bushing at torsional amplitude 5

o
 and excitation frequency 10HZ 

(a) Digit camera; (b) thermal. 
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Table 3: Temperature distribution at torsional angle 

5
o
 and 10HZ 

Points 

No. 

1 2 3 4 5 6 7 

Temp

(K) 

303.2 304.8 306.4 309.1 311.4 309.0 307.5 

 

Figure 16 is the digital photo and thermal photo 

recorded using thermal imager in order to explore the 

dynamic performance of rubber bushing under 

torsional testing.  Torsional degree and frequency are 

specified as 5
o
 and 10HZ respectively.  Because the 

deformation under torsional degree 5
o
 is relative 

larger than that under radial amplitude 1mm, the 

temperature rising under torsional test is quicker than 

that under the radial testing. Similarly, a group of 

points are spotted to explore the temperature 

distribution in radial direction. The locations of those 

points are clearer in the digital photo and the 

temperatures of selected points are list in Table 3.  

During the torsional test, the outer surface of the 

rubber core is fixed by the fixture and the torque is 

transmitted through the inner shaft. As a 

consequence, the points close to the inner shaft 

experience the higher deformation and have more 

dissipation energy accumulation. While in the 

circumferential direction, the deformation is uniform 

as the amplitude angle and radius determine the 

displacement.  Finally, the inner surface zone of the 

rubber core becomes the concentration of heat built 

up and displays highest temperature. Point 6 is 

located on the interface of rubber and steel, thus, the 

temperature distribution in radial starts to decrease 

from this point. The thermal behavior of torsional 

testing identifies another easy failure zone of bushing 

as the inner surface of rubber core, where special 

attention is required for operation and design in 

future. 

 

VI. Conclusion 
The FEA program is developed to analyze the 

frequency dependent viscoelastic structure. In view 

of the out of phase between stress and strain, the 

dissipation energy density inside of the rubber 

component has been investigated. The principle and 

approach to calculate the external work, potential 

energy, kinetic energy and dissipation energy are 

elaborated and the clamped beam is practiced to 

verify the energy calculation with the principle of 

energy conservation.  The periodicity of the 

dissipation energy under the harmonic excitation 

indicates the constant heat generation rate.  The 

thermal properties are measured using TPS and the 

boundary condition of the heat transfer simulation is 

set to simulate the dynamic radial testing.  The FVM 

allows different heat source at each control volume, 

and the heat generation of each volume comes from 

the dissipation energy calculated from the Simplex 

program. To verify the accuracy and applicability of 

the Simplex program and following heat transfer 

simulation, dynamic radial testing is carried out. That 

results are recorded using indicates thermal imager 

and experimental temperature matches well with the 

simulated. The radial testing indicates that the higher 

temperature appears around vertical loading zone 

while the higher temperature at torsional testing 

appears at the central but close to the inner surface of 

the steel sleeves. Those results presents the easy 

failure zone of rubber bushing under different loading 

and shed a light on the design optimization.  
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